Search results

1 – 2 of 2
Article
Publication date: 6 February 2017

Qiang Fang, Weidong Chen, Anan Zhao, Changxi Deng and Shaohua Fei

In aircraft wing–fuselage assembly, the distributed multi-point support layout of positioners causes fuselage to deform under gravity load, leading to assembly difficulty and…

Abstract

Purpose

In aircraft wing–fuselage assembly, the distributed multi-point support layout of positioners causes fuselage to deform under gravity load, leading to assembly difficulty and assembly stress. This paper aims to propose a hybrid force position control method to balance aerodynamic shape accuracy and deformation of assembly area, thereby correcting assembly deformation and reducing assembly stress.

Design/methodology/approach

Force and position control axes of positioners are selected based on screw theory and ellipsoid method. The position-control axes follow the posture trajectory to align the fuselage posture. To exert force on the fuselage and correct the deformations, the force-control axes follow the contact force derived by using orthogonal experiments and partial least squares regression (PLSR). Finite element simulation and one-dimension deformation correction experiment are conducted to verify the validity of this method.

Findings

Simulation results indicate that hybrid force position control method can correct assembly deformation and improve the wing–fuselage assembly quality significantly. Experiment on specimen verifies the effect of this method indirectly.

Originality/value

The proposed method gives a solution to solve the deformation problem during aircraft wing-fuselage assembly, thereby reducing assembly stress and improving assembly quality.

Details

Assembly Automation, vol. 37 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 29 March 2022

Eldana Ayka Anka, Defaru Katise Dasho, Democracy Dilla Dirate and Tarun Kumar Lohani

This paper aims to present physical and geotechnical study in terms of experimental field and laboratory investigations of the subgrade soils in severely damaged and highly…

Abstract

Purpose

This paper aims to present physical and geotechnical study in terms of experimental field and laboratory investigations of the subgrade soils in severely damaged and highly degraded road section with numerous potholes between Chencha to Ezo towns of Ethiopia needs to be addressed for a robust pavement.

Design/methodology/approach

Eighteen soil samples were collected from 18 km road stretch at a kilometer interval by considering variation and composition of soils along the road alignment. The field density with dry density, natural moisture content, consistency limit, compaction and California Bearing Ratio (CBR) were determined.

Findings

Soils were classified predominantly as silty-clay that replicates its expansive nature, characterized as bad to medium subgrade. The average optimum moisture content and maximum dry density are 17.18% and 1.83 g/cc, whereas the average CBR and swell as 8.40% and 1.49%, respectively. The investigated results indicated that the indispensable way for a stable and durable road subgrade in the existing silty clayey soil requires a capping layer. The results were uploaded into ArcGIS platform to create interactive maps for spatial distribution, composition and strength of the subgrade properties.

Originality/value

Experimental investigation of subgrade soils by scientific procedures and presenting important properties through integrated approach using ArcGIS Mapping for the road pavement design and construction purpose of under developed areas like Chencha-Ezo. ArcGIS-based mapping of all required and numerical subgrade properties with a single click using ArcGIS tool is the main significance and contribution of this study. To the best of the authors’ knowledge, this paper is original, and all the references are properly cited.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 2 of 2